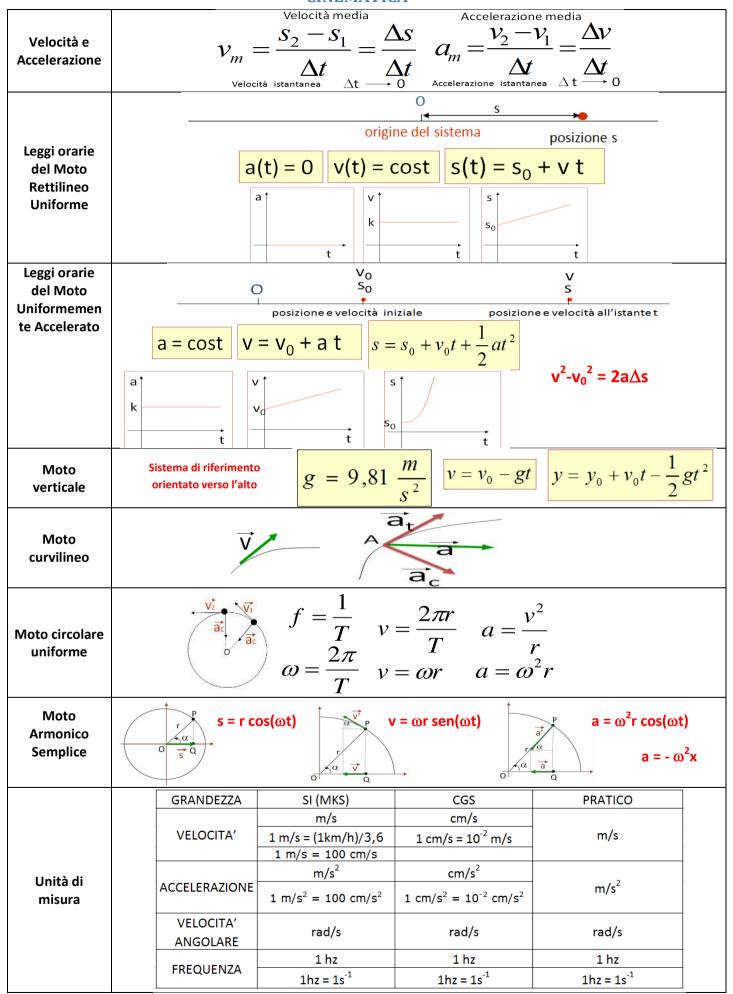


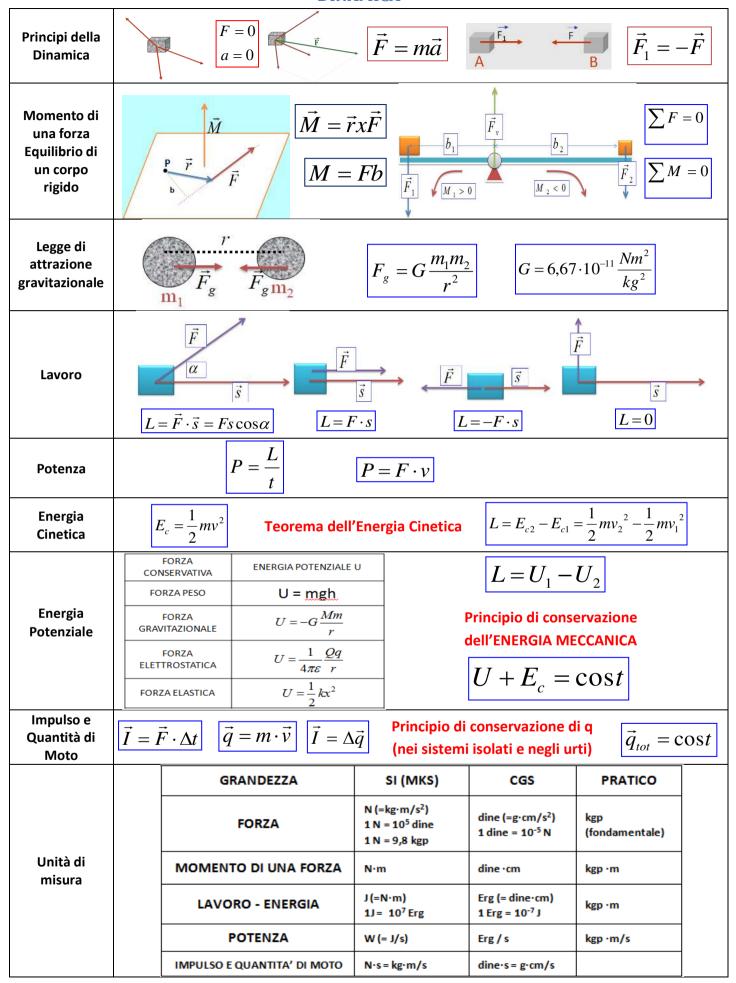
FORMULARIO DI FISICA

Sommario

GRANDEZZE E MISURA	2
VETTORI E FORZE	3
CINEMATICA	4
DINAMICA	5
FLUIDI	6
TERMOLOGIA E TERMODINAMICA	7
ELETTRONA A CNIETISMA	0

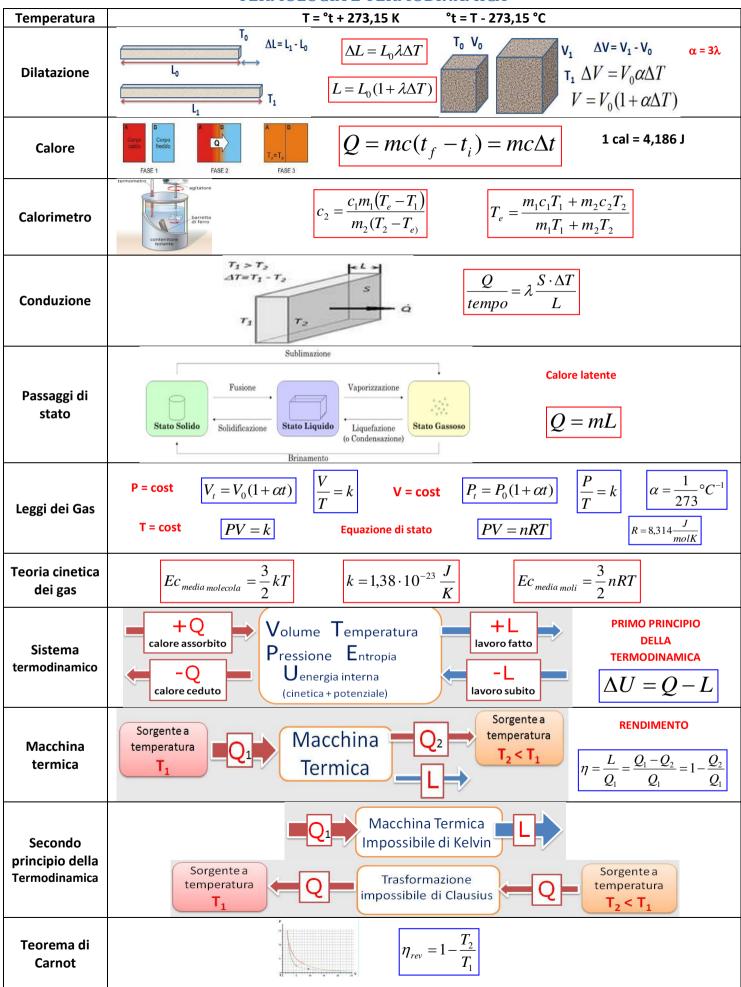

GRANDEZZE E MISURA

		GRANI	DEZZE E MIS	URA			
	-	Nome	Simbolo	P	1oltiplica		
		giga	G	10000000			
		mega	М	9 80 80 80 80 80 80 80 80 80 80 80 80 80	$000 = 10^6$		
		kilo	k	37.00-2.3	$000 = 10^3$		
		etto	h	<u> </u>	$100 = 10^2$		
		deca	da		$10 = 10^1$		
PREFISSI	8	deci	d		$\frac{1}{10} = 10^{-1}$		
	2	centi	С	10	$\frac{1}{00} = 10^{-2}$		
	3	milli	m	1 100	$\frac{100}{100} = 10^{-3}$		
		micro	μ	1 000 00	$\frac{10^{-6}}{10^{-6}}$		
	3	nano	n	1 000 000 00	$\frac{100}{100} = 10^{-9}$		
	Nome		Simbolo		Valore in m³		
UNITA' DI	decimetro cu	ıbo (litro)	dm³ (L)		$\frac{1}{1000} = 10^{-3}$		
VOLUME	centimetro c	ubo (millilitro)	cm³ (mL)	10	$\frac{1}{000000} = 10^{-6}$		
CALCOLO DEI VOLUMI	$V = L_1 \cdot L_2 \cdot L_3$						
DENSITA' E PESO	$V = \pi r^2 h$ $V = \frac{1}{3}\pi r^2 h$ $V = \frac{4}{3}\pi r^3$ $d = \frac{m}{V}$ $p_S = \frac{p}{V} = \frac{mg}{V} = dg$						
SPECIFICO						—	
	GRANDEZZA	SI (MKS)		cgs	PRATICO	ĺ	
	LUNGHEZZA	METRO (m		NTIMETRO (cm)	METRO (m)	1	
	AREA	m ² = 10 ⁴ cr		em ² = 10 ⁻⁴ m ²	m ²		
	VOLUME	m ³ = 10 ⁶ cr		m ³ = 10 ⁻⁶ m ³	m ³		
TABELLA	MASSA	KILOGRAMMO		GRAMMO (g)	KILOGRAMMO (kg = kgp·s²/9,8 m)		
UNITA' DI	ТЕМРО	SECONDO ((s)	SECONDO (s)	SECONDO (s)		
MISURA	FORZA	NEWTON (N = kg·m/s 1 N = 10 ⁵ dy	s ²) (<u>c</u>	DINE line = g·cm/s²) dine = 10 ⁻⁵ N	KILOGRAMMO PESO (kgp)		
	DENSITA'	$kg/m^3 = 10^3 g$	/cm ³ g/c	cm ³ = 10 ⁻³ kg/m ³	kg/m³		
	PESO SPECIFICO	N/m ³ = 10 ⁻¹ din		e/cm³ = 10 N/m³	kgp/m³=9,8 N/m³		


VETTORI E FORZE

Prodotto scalare- vettore	s -s 2s -3s				
Somma di vettori	Parallelogramma $\vec{a} + \vec{b}$ $\vec{a} + \vec{b}$ Punta-coda				
Differenza di vettori	PUNTA-PUNTA \vec{a} \vec{b} \vec{b} \vec{a}				
Prodotto scalare	$\vec{a} \cdot \vec{b} = ab \cos \alpha$				
Prodotto vettoriale	$\vec{a} \times \vec{b}$ \vec{b} $ \vec{a} \times \vec{b} = ab \operatorname{sen} \alpha$				
Forza peso	$ \vec{p} = m\vec{g} _{g = 9.8 \frac{m}{s^2}}$				
Forze d'attrito	$F_a = k \cdot N$ $F_a = k \cdot \frac{N}{r}$ $F_a = k \cdot \frac{N}{r}$ $F_a = -k \cdot \vec{v}$ $F_a = -k \cdot \vec{v}$ $F_a = -k \cdot \vec{v}$ Volvente $F_a = -k \cdot \vec{v}$ $F_a = -k \cdot \vec{v}$ $F_a = -k \cdot \vec{v}$				
Forza elastica	Legge di Hooke $\vec{F_e} = -k\vec{s}$				

CINEMATICA


DINAMICA

FLUIDI

	LOIDI				
Densità Peso Specifico Pressione	$d = \frac{m}{V} \qquad p_s = \frac{p}{V} = \frac{mg}{V} = dg \qquad m = dV p = dgV \qquad \vec{F} \qquad P = \frac{F}{S}$				
Principio di Pascal e torchio idraulico	$\frac{F_A}{S_A} = \frac{F_B}{S_B}$				
Legge di Stevino (generalizzata)	$P = dgh$ $P = dgh + p_a$				
Principio di Archimede Galleggiamen to	$S_A = d_{liquido}gV_{immerso}$ $\frac{V_i}{V} = \frac{d_{corpo}}{d_{liquido}}$				
Peso apparente	in aria in acqua $p_{apparente} = p - s_A = (d_{corpo} - d_{acqua})gV$				
	SI (MKS) CGS PRATICO				
Unità di	Pascal (Pa) Baria (Ba) kgp / m^2 [= $N/m^2 = kg/(m \cdot s^2)$] [= $N/m^2 = kg/(m \cdot s^2)$				
misura della Pressione e	1 torr = pressione di1 mm di Hg $1 \text{ atm} = 1.01 \cdot 10^5 \text{ Pa} = 760 \text{ torr}$				
conversioni	1 bar = 10 ⁵ Pa = 1 MBa				
	$1 \text{ Pa} = 10^{-5} \text{ bar} = 10 \text{ Ba} = 0.99 \cdot 10^{-5} \text{ atm} = 9.8 \text{ kg}_p/\text{m}^2$ $1 \text{ Ba} = 10^{-1} \text{ Pa} = 10^{-6} \text{ bar}$				
Portata ed equazione di continuità (Fluidi in moto)	$Po = \frac{\Delta V}{t} = S \cdot v \left[\frac{m^3}{s}\right]$ $Po_1 = Po_2 \rightarrow S_1 V_1 = S_2 V_2$				
Teorema di Bernoulli	Punto 1 $P_{1A_1i} = P_{1A_2i}$ $P_{1A_1i} = P_{1A_2i}$ $P_{1A_2i} = P_{1A_2i$				

TERMOLOGIA E TERMODINAMICA

ELETTROMAGNETISMO

ELETTROMAGNETISMO				
FORZE GRAVITAZIONALE ED ELETTRICA	Gravitazionale $F_{g} = F_{g}$ m_{1} $F_{g} = F_{g}$	$= G \frac{m_1 m_2}{r^2} \underbrace{\overrightarrow{F}_s}_{\text{eq}_1}$	tatica $F_e = K \frac{q_1 q_2}{r^2}$	
CAMPI GRAVITAZIONA LE ED ELETTRICO	$ \underbrace{\vec{H}} \mathbf{P} H = \frac{F_g}{m} = 0 $	$G\frac{M}{r^2}$ P	$\vec{E} = \frac{F_e}{q} = K \frac{Q}{r^2} = \frac{1}{4\pi\varepsilon} \frac{Q}{r^2}$	
ENERGIA POTENZIALE /	L _{AB}	$L_{AB} = U_A - U_B$ $V(P) = V(P)$	<i>q</i>	
POTENZIALE	$A \leftarrow L_{AB}$	$U_P = K \frac{Qq}{r_P} \qquad V(P) = V(P)$	$=K\frac{Q}{r}$ $eV=e\cdot V$	
CONDENSATORI	$C = \frac{Q}{\Delta V} = 0$	$\varepsilon \frac{A}{d} \frac{1}{C_{TOT}} = \frac{1}{C_1} + \frac{1}{C_2} + .$	$C_{tot} = C_1 + C_2 + \dots$	
CORRENTE ELETTRICA / LEGGI DI OHM	Δq ΔV R	$R = \rho \frac{l}{A}$		
RESISTENZA	$i = \frac{\Delta q}{\Delta t}$ $\frac{\Delta v}{i} = R$	$\rho = \rho_0 (1 + \alpha t) R_{tot} = R_1 + C_1$	$-R_2 + \dots \overline{R_{tot}} - \overline{R_1} + \overline{R_2} + \dots$	
ENERGIA ELETTRICA	energia potenziale elettrica	aumenta la temperatura energia termica	$= i \cdot \Delta V = i^2 R = \frac{\left(\Delta V\right)^2}{R}$	
MAGNETISMO	$F = \frac{\mu_0}{2\pi}$	$\frac{i_1i_2}{d}l$ B	$=rac{\mu_0 i}{2\pi R}$ $\vec{F}=q\vec{v}\wedge\vec{B}$ $\vec{F}=i\vec{L}\wedge\vec{B}$	
FLUSSO / INDUZIONE ELETTROMAGNETICA	$\Phi = \vec{B} \cdot \vec{A} =$	$BA\cos\theta$	$fem = -\frac{\Delta\Phi}{\Delta t}$	
	GRANDEZZA	SI (MKS)	CGS	
	INTENSITA' DI CORRENTE	AMPERE (A)	statC /s	
	CARICA ELETTRICA	COULOMB(C) = $V \cdot s$	statC o Franklin = 3,3356 ·10 ⁻¹⁰ C	
	CAMPO GRAVITAZIONALE	m/s ²	cm/s ²	
UNITA' DI MISURA	CAMPO ELETTRICO	N/C	dyne/statC	
	POTENZIALE ELETTRICO	VOLT(V) = J/C	statV ~ 300 V	
	CAPACITA' ELETTRICA	FARAD(F) = C/V		
	RESISTENZA ELETTRICA	$OHM(\Omega) = V/A$		
	RESISTIVITA' ELETTRICA	Ω <u>·m</u>		
	CAMPO MAGNETICO	TESLA (T) = N/(A·m)	GAUSS(G) = 10 ⁻⁴ T	

FLUSSO MAGNETICO

WEBER (Wb) = T·m²

MAXWELL (M) = G·cm²