AREAS UNDER CURVES

1. Let f be a continuous curve over [a, b]. If $f(x) \ge 0$ in [a, b], then the area of the region bounded by $y = f(x)$, x-axis and the lines $x=a$ and $x=b$ is given by

2. Let f be a continuous curve over [a,b]. If $f(x) \leq o$ in [a,b], then the area of the region bounded by $y = f(x)$, x-axis and the lines $x=a$ and $x=b$ is given by

3. Let f be a continuous curve over [a,b]. If $f(x) \geq o$ in [a, c] and $f(x) \leq o$ in

 $[c, b]$ where $a \le c \le b$. Then the area of the region bounded by the curve $y = f(x)$,

the x-axis and the lines x=a and x=b is given by $\int_a^c f(x) dx - \int_a^b f(x) dx$ *a c* $\int f(x)dx - \int f(x)dx$.

$$
f(x) \ge 0
$$

$$
f(x) \ge 0
$$

$$
f(x) \le 0
$$

$$
A = \int_a^b f(x)dx - \int_a^b f(x)dx
$$

 $\overline{}$

4. Let f(x) and g(x) be two continuous functions over [a, b]. Then the area of the region bounded by the curves $y = f(x)$, $y = g(x)$ and the lines $x = a$, $x=b$ is given

5. Let f(x) and g(x) be two continuous functions over [a, b] and $c \in (a, b)$. If $f(x) > g(x)$ in (a, c) and $f(x) < g(x)$ in (c, b) then the area of the region bounded by the curves $y= f(x)$ and $y= g(x)$ and the lines $x=a$, $x=b$ is given by $\int_{a}^{c} (f(x)-g(x))dx + \int_{a}^{b} (g(x)-f(x))dx$ *a c* $\int (f(x)-g(x))dx + \int (g(x)-f(x))dx$

6. let f(x) and g(x) be two continuous functions over [a, b] and these two curves are intersecting at X = x_1 **and** $x = x_2$ **where** $x_1, x_2 \in (a, b)$ **then the area of the region bounded** by the curves $y = f(x)$ and $y = g(x)$ and the lines $x=x_1$, $x=x_2$ is given by

www.sakshieducation.com

Note: The area of the region bounded by $x = g(y)$ where g is non negative continuous function in [c,d], the y axis and the lines y = c and y=d is given by $\int_{a}^{d} g(y) dy$.

c

Very Short Answer Questions

1. Find the area of the region enclosed by the given area

$$
i) y = \cos x, y = 1 - \frac{2x}{\pi}.
$$

Sol: Equations of the given curves are

$$
\sin \left(0, \frac{\pi}{2}\right), (1) > (2) \text{ and } \sin \left(\frac{\pi}{2}, \pi\right), (2) > (3)
$$

in
$$
\left(0, \frac{\pi}{2}\right)
$$
, (1) > (2) and in $\left(\frac{\pi}{2}, \pi\right)$, (2) > (1)

Therefore required area =
$$
\int_{0}^{\frac{\pi}{2}} (y \text{ of (1)-y of (2)}) dx + \int_{\frac{\pi}{2}}^{\pi} (y \text{ of (2)-y of (1)}) dx =
$$

$$
\int_{0}^{\frac{\pi}{2}} \left(\cos x - 1 + \frac{2x}{\pi} \right) dx + \int_{\frac{\pi}{2}}^{\pi} \left(1 - \frac{2x}{\pi} - \cos x \right) dx
$$

$$
= \left(\sin x - x + \frac{x^{2}}{\pi} \right)_{0}^{\frac{\pi}{2}} + \left(x - \frac{x^{2}}{\pi} - \sin x \right)_{\frac{\pi}{2}}^{\pi}
$$

$$
= 2 - \frac{\pi}{2}
$$

2.
$$
y = cos x
$$
, $y = sin2x$, $x = 0$, $x = \frac{\pi}{2}$

- **Sol:** Given curves $y = cos x$ ---- (1)
- $y = \sin 2x$ ---- (2) Solving (1) and (2), $\cos x = \sin 2x$ cosx-2sinx cosx=0 (where $sin(2x) = 2 sin x cos x$.) $cosx=0$ and $1-2sinx=0$ $x = \frac{\pi}{2}$, sin $x = \frac{1}{2} \Rightarrow x$ 2^{\prime} 2 6 $=\frac{\pi}{2}$, sin x = $\frac{1}{\pi}$ \Rightarrow x = $\frac{\pi}{4}$ Given curve re intersecting at $x = \frac{\pi}{6}$, $\frac{\pi}{2}, \frac{\pi}{4}$

Required area =

$$
\int_{0}^{\frac{\pi}{6}} (\cos x - \sin 2x) dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (\sin 2x - \cos x) dx
$$

$$
= \left(\sin x + \frac{\cos 2x}{2}\right)_{0}^{\frac{\pi}{6}} + \left(-\frac{\cos 2x}{2} - \sin x\right)_{\frac{\pi}{6}}^{\frac{\pi}{2}}
$$

$$
= \left[\left(\frac{1}{2} + \frac{1}{4}\right) - \left(0 + \frac{1}{2}\right)\right] - \left[\left(\frac{1}{2} - 1\right) - \left(-\frac{1}{4} - \frac{1}{2}\right)\right]
$$

$$
= \frac{1}{2} + \frac{1}{4} - \frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{1}{2} = \frac{1}{2}
$$
 sq.units

3.
$$
y = x^3 + 3
$$
, $y = 0$, $x = -1$, $x = 2$

Sol: $y = x^3 + 3$, $y = 0$, $x = -1$, $x = 2$

Given curve is continuous in $[-1.2]$ and $y>0$.

Area bounded by
$$
y = x^3 + 3
$$
, $x - axis$, $x = -1$, $x = 2$ is $\int y dx$

 $\overline{2}$

1 −

$$
= \int_{-1}^{2} (x^3 + 3) dx = \left(\frac{x^4}{4} + 3x\right)_{-1}^{2}
$$

$$
= \left(\frac{2^2}{4} + 3.2\right) - \left(\frac{(-1)^4}{4} + 3(-1)\right)
$$

$$
=12\frac{3}{4} \text{ sq. units}
$$

4. $y = e^x, y = x, x = 0, x = 1$

Sol: Given curve is $y = e^x$

Lines are $y = x$, $x=0$ and $x=1$.

Required area =

$$
\int_{0}^{1} (e^{x} - x) dx = \left(e^{x} - \frac{x^{2}}{2}\right)_{0}^{1}
$$

$$
= \left(e - \frac{1}{2}\right) - (1 - 0) = e - \frac{3}{2}
$$

5.
$$
y = \sin x, y = \cos x; x = 0, x =
$$

Sol. Given curves
$$
y = \sin x
$$
---(1)

 $y = cos x$ ------- (2)

From (1) and (2), $\cos x = \sin x$

 Between 0 and, 4 $\frac{\pi}{4}$ Cos x > sin x

2 π

Between
$$
\frac{\pi}{4}
$$
 and $\frac{\pi}{2}$, $\cos x < \sin x$

Required area

$$
= \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) dx
$$

$$
= (\sin x + \cos x)_{0}^{\frac{\pi}{4}} - (\sin x + \cos x)_{\frac{\pi}{4}}^{\frac{\pi}{2}}
$$

$$
= (\sqrt{2} - 1) + (\sqrt{2} - 1) = 2(\sqrt{2} - 1) \text{ sq. units}
$$

6. $x = 4 - y^2$, $x = 0$.

Sol: Given curve is $x = 4 - y^2$ --- (1)

Put $y=0$ then $x=4$.

The parabola $x = 4 - y^2$ meets the x – axis at A(4,0).

Require area = region AQPA

Since the parabola is symmetrical about $X - axis$,

Required area $= 2$ Area of OAP

$$
= 2\int_{0}^{2} (4-y^2) dy = 2\left(4y - \frac{y^3}{3}\right)_{0}^{2}
$$

$$
= 2\left(8 - \frac{8}{3}\right) = 2 \cdot \frac{16}{3} = \frac{32}{3} \text{ sq. units}
$$

7. Find the area enclosed within the curve $|x| + |y| = 1$.

Sol: The given equation of the curve is $|x|+|y|=1$ which represents $\pm x \pm y = 1$ representing four different lines forming a square.

Consider the line $x + y = 1 \implies y = 1 - k$

If the line touches the X-axis then $y = 0$ and one of the points of intersection with X-axis is $(1, 0)$.

Since the curve is symmetric with respect to coordinate axes, area bounded by $|x|+|y| = 1$ is

8. Find the area under the curve $f(x) = \sin x$ in $(0, 2\pi)$

 $f(x) = \sin x$,

We know that in $[0, \pi]$, sin $x \ge 0$ and $[\pi, 2\pi]$, sin $x \le 0$

Required area
$$
\int_{1}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} (-\sin x) \, dx
$$

$$
(-\cos x)_{0}^{\pi} [\cos x]_{\pi}^{2\pi}
$$

$$
= -\cos \pi + \cos 0 + \cos 2\pi - \cos \pi
$$

$$
= -(-1) + 1 + 1 - (-1) = 1 + 1 + 1 + 1 = 4
$$

9. Find the area under the curve $f(x) = \cos x$ in $[0, 2\pi]$.

Sol: We know that $\cos x \ge 0$ in $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}\right)$ $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, \pi\right)$ and ≤ 0 in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

Required area

$$
= \int_{0}^{\frac{\pi}{2}} \cos x dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (-\cos x) dx + \int_{\frac{3\pi}{2}}^{2\pi} \cos x dx
$$

$$
= (\sin x)^{\frac{\pi}{2}}_{0} + (-\sin x)^{\frac{3\pi}{2}}_{\frac{\pi}{2}} + (\sin x)^{2\pi}_{3\pi/2}
$$

$$
= \sin \frac{\pi}{2} - \sin 0 - \sin \frac{3\pi}{2} + \sin \frac{\pi}{2} + \sin 2\pi - \sin \frac{3\pi}{2}
$$

$$
= 1 - 0 - (-1) + 1 + 0 - (-1)
$$

$$
= 1 + 1 + 1 + 1 = 4.
$$

10. Find the area bounded by the parabola $y = x^2$, the X–axis and the lines $x = -1$,

Sol:

Required area =
$$
\int_{-1}^{2} x^2 dx = \left(\frac{x^3}{3}\right)_{-1}^{2}
$$

$$
= \frac{1}{3} \left(2^3 - (-1)^3\right) = \frac{1}{3} \left(8 + 1\right) = \frac{9}{3} = 3
$$

11. Find the area cut off between the line y and the parabola $y = x^2 - 4x + 3$.

Sol:

Equation of the parabola is $y = x^2 - 4x + 3$

Equation of the line is $y = 0$

$$
x^2 - 4x + 3 = 0, (x - 1)(x - 3) = 0, x = 1,3
$$

The curve takes negative values for the values of x between 1 and 3.

Required area
$$
= \int_{1}^{3} -(x^2 - 4x + 3) dx
$$

\n
$$
= \int_{1}^{3} (-x^2 + 4x - 3) dx
$$
\n
$$
= \left(-\frac{x^3}{3} + 2x^2 - 3x\right)_{1}^{3}
$$
\n
$$
= (-9 + 18 - 9) - \left(-\frac{1}{3} + 2 - 3\right)
$$
\n
$$
= \frac{10}{2} - 2 = \frac{4}{3}
$$

Short Answer Questions

1. $x = 2 - 5y - 3y^2, x = 0.$

Sol:

- **2.** $x^2 = 4y$, $x = 2$, $y = 0$
- **Sol. Given curve** $x^2 = 4y$,

X=2 and y=0 i.e., x- axis

The parabola is symmetrical about $X - axis$ Required area = 2 (area of the region bounded by the curve, x-axis, $x=0$ and $x=3$)

$$
= 2 \int_{0}^{3} y \, dx = 2 \int_{0}^{3} \sqrt{3}. \sqrt{x} \, dx
$$

www.sakshieducation.com

$$
= \left(2\sqrt{3} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_0^3 = \frac{4\sqrt{3}}{3} \cdot \left(3\sqrt{3} - 0\right) = 12 \text{ sq. units}
$$

4)
$$
y = x^2
$$
, $y = 2x$.

Sol:

Eliminating y, we get $x^2 = 2x$

$$
x^2 - 2x = 0, x(x-2) = 0
$$

 $x = 0$ or $x = 2$, $y=0$ or $y = 4$

Points of intersection are O(0,0), A(2,4)

Required area =
$$
\int_{0}^{2} (2x - x^2) dx
$$

= $\left(x^2 - \frac{x^3}{3}\right)_0^2 = 4 - \frac{8}{3} = \frac{4}{3}$ sq. units

5.
$$
y = \sin 2x
$$
, $y = \sqrt{3} \sin x$, $x = 0$, $x = \frac{\pi}{6}$.

Sol; y = sin 2x-
\ny =
$$
\sqrt{3} \sin x
$$
 (1)
\nSolving Sin2x = $\sqrt{3} \sin x$
\n \Rightarrow 2sinx.
\ncosx = $\sqrt{3} \sin x$
\n \Rightarrow Sinx =0 or 2 cos x = $\frac{\sqrt{3}}{2}$

www.sakshieducation.com

⇒ x = 0, cos x =
$$
\frac{\sqrt{3}}{2}
$$
 ⇒ x = $\frac{\pi}{6}$
\n
\nRequired area = $\int_{0}^{\frac{\pi}{2}} (\sin 2x - \sqrt{3} \sin x) dx$
\n= $\left(-\frac{\cos 2x}{2} + \sqrt{3} \cos x\right)_{0}^{\frac{\pi}{6}}$
\n= $\left(-\frac{1}{4} + \sqrt{3} \cdot \frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2} + \sqrt{3}\right)$
\n= $-\frac{1}{4} + \frac{3}{2} + \frac{1}{2} - \sqrt{3} = \frac{7}{4} - \sqrt{3} \text{ sq. units}$
\n6), y = x², y = x³.
\n
\nSoI: Given equations are y = x³ (1)
\ny = x³ (2)
\n
\nFrom equation (1) and (2) x² = x³
\n
\n(a) y = x², y = x³.
\n(c) y = x², y = x³.
\n(c) y = x², y = x³ (3)
\n
\n $y = x3 = 0$, x²(x-1) = 0
\n
\n $y = 0$ or 1

Required area
$$
= \int_{1}^{5} (y \text{ of } (1) - y \text{ of } (2)) \text{ dx } = \int_{1}^{5} (4x - x^2 - 5 + 2x) \text{ dx}
$$

\n $= \int_{1}^{5} (6x - x^2 - 5) \text{ dx } = \int_{1}^{5} (3x^2 - \frac{x^3}{3} - 5x) \Big|_{1}^{5}$
\n $= \left(75 - \frac{125}{3} - 25\right) - \left(3 - \frac{1}{3} - 5\right)$
\n $= 50 - \frac{125}{3} + 2 + \frac{1}{3}$
\n $= \frac{150 - 125 + 6 + 1}{3} = \frac{32}{3}$ sq. units

8. Find the area in sq.units bounded by the

$$
= 50 - \frac{125}{3} + 2 + \frac{1}{3}
$$

$$
= \frac{150 - 125 + 6 + 1}{3} = \frac{32}{3}
$$
 sq. units
Find the area in sq. units bounded by the
X-axis, part of the curve $y = 1 + \frac{8}{x^2}$ and the ordinates $x = 2$ and $x = 4$.

Sol: In [2, 4] we have the equation of the curve given by $y = 1 + \frac{8}{x^2}$ x $= 1 + \frac{8}{2}$.

∴ Area bounded by the curve $y=1+\frac{8}{x^2}$ x $= 1 + \frac{6}{2}$.

X-axis and the ordinates $x = 2$ and $x = 4$ is

$$
= \int_{2}^{4} y \, dx = \int_{2}^{4} \left(1 + \frac{8}{x^{2}}\right) dx
$$

$$
= \left[x - \frac{8}{x}\right]_{2}^{4} = \left(4 - \frac{8}{4}\right) - \left(2 - \frac{8}{2}\right)
$$

 $= 2 + 2 = 4$ sq.units.

$$
y = 1 + \frac{8}{x^2}
$$

O
 $x = 2$ $x = 4$

9. Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.

Sol: Given equations of curves are

$$
y^2 = 4x \qquad \dots (1)
$$

And
$$
x^2 = 4y \qquad \dots (2)
$$

Solving (1) and (2) the points of inter-section can be obtained.

$$
Y^2 = 4x \Rightarrow y^4 = 16x^2 \Rightarrow y^4 = 64y \Rightarrow y = 4
$$

∴ $4x = y^2$ ⇒ $4x = 16$ ⇒ $x = 4$

Points of intersection are (0, 0) and (4, 4).

∴ Area bounded between the parabolas

$$
= \int_{0}^{4} \sqrt{4x} \, dx - \int_{0}^{4} \frac{x^{2}}{4} \, dx
$$

$$
= 2 \left[\frac{x^{3/2}}{3/2} \right]_{0}^{4} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{0}^{4}
$$

$$
= \frac{4}{3} (4^{3/2}) - \frac{1}{12} (64)
$$

$$
= \frac{32}{3} - \frac{16}{3} = \frac{16}{3} \text{ sq. units.}
$$

10. Find the area bounded by the curve y = log x, the X-axis and the straight line

 $x = e.$

Sol: Area bounded by the curve $y = log_c x$,

X-axis and the straight line $x = e$ is

$$
= \int_{1}^{e} \log_{e} x \, dx
$$

$$
= [\,x \log x\,]_1^e - \int\limits_1^e dx
$$

 $(:$ When $x = e$, $y = log_e e = 1)$

$$
= (e - 0) - (e - 1) = 1
$$
 sq. units.

11. Find the area bounded by $y = \sin x$ and $y = \cos x$ between any two **consecutive points of intersection .**

www.sakshieducation.com

$$
= (-\cos x - \sin x)_{\frac{\pi}{4}}^{\frac{5\pi}{4}}
$$

= $\left(-\cos \frac{5\pi}{4} - \sin \frac{5\pi}{4}\right) + \left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4}\right)$
= $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 4\frac{1}{\sqrt{2}} = 2\sqrt{2}$

12. Find the area of one of the curvilinear triangles bounded by $y = \sin x$ **,** $y = \cos x$ and $X - \text{axis}$.

13. Find the area of the right angled triangle with base b and altitude h, using the fundamental theorem of integral calculus.

Sol:

OAB is a right angled triangle and $\angle B = 90^\circ$ take 'O' as the origin and OB as positive $X - axis$

If $OB = b$ and $AB = h$, then co – ordinates of A are (b, h)

Equation of OA is $y = \frac{h}{l}x$ b =

 Area of the triangle OAB = b $\boldsymbol{0}$ $\frac{h}{x}$ xdx \int_{0}^{11}

$$
= \frac{h}{b} \left(\frac{x^2}{2}\right)_0^b = \frac{h}{b} \frac{b^2}{2} = \frac{1}{2} bh.
$$

14. Find the area bounded between the curves $y^2 - 1 = 2x$ and $x = 0$

Sol:

The parabola $y^2 - 1 = 2x$ meets

$$
X - axis at A\left(-\frac{1}{2} 0\right) and Y - axis at y = 1
$$

 $y = -1$. The curve is symmetrical about $X - axis$ required area

$$
= \int_{-1}^{1} (-x) dy = \int_{-1}^{1} - \left(\frac{y^2 - 1}{2}\right) dy
$$

D.

$$
= \int_{0}^{1} -(y^{2} - 1) dy = \left(-\frac{y^{3}}{3} + y\right)_{0}^{1} = 1 - \frac{1}{3} = \frac{2}{3}
$$

15. Find the area enclosed by the curves $y = 3$ and $y = 6x - x^2$.

The straight line $y = 3x$ meets the parabola

y = 6x-x². 3x = 6x-x², x²-3x = 0
\nx(x-3) = 0, x = 0 or 3
\nRequired area =
$$
\int_{0}^{3} (6x-x^2-3x) dx
$$
\n
$$
= \int_{0}^{3} (3x-x^2) dx = \left(\frac{3x^2}{2}-\frac{x^3}{3}\right)_{0}^{3}
$$
\n
$$
= \frac{27}{2}-\frac{27}{3} = \frac{27}{6} = \frac{9}{2}.
$$

Long Answer Questions

1. $y = x^2 + 1$, $y = 2x - 2$, $x = -1$, $x = 2$.

Sol: Equation of the curves are

$$
y = x2 + 1
$$
 (1)

$$
y = 2x - 2
$$
 (2)

Area between the given curves

$$
= \int_{-1}^{2} (f(x)-g(x))dx
$$

\n
$$
= \int_{-1}^{2} [(x^2-1)-(2x-2)]dx
$$

\n
$$
= \int_{-1}^{2} (x^2-2x+3)dx
$$

\n
$$
= \left(\frac{8}{3}-4+6\right)-\left(-\frac{1}{3}-1-3\right)
$$

\n
$$
\frac{8}{3}+2+4+\frac{1}{3}=3+6=9 \text{ sq. units.}
$$

2.
$$
y^2 = 4x, y^2 = 4(4-x)
$$

Sol: Equation of the curves are

$$
y^2 = 4x
$$
 (1)
\n $y^2 = 4 (4-x)$ (2)
\nSolving, we get
\n $4x= 4 (4-x) \Rightarrow 2x = 4 \Rightarrow x = 2$

$$
y=0 \Rightarrow x=0
$$
 and $x=4$

Given curves intersects at x=2 and those curves intersect the x axis at x=0 and

x=4.

Required area is symmetrical about X – axis Area OACB

$$
= 2\left[\int_{0}^{2} 2\sqrt{x} \, dx + \int_{2}^{4} 2\sqrt{4 - x} \, dx\right]
$$

$$
= 2\left[2\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{2} + 2\left\{\frac{(4 - x)^{\frac{3}{2}}}{-\frac{3}{2}}\right\}_{2}^{4}
$$

$$
= 2\left[\frac{4}{3}(2\sqrt{2}) - \frac{4}{3}(-2\sqrt{2})\right] = 2\left(\frac{8\sqrt{2}}{3} + \frac{8\sqrt{2}}{3}\right)
$$

$$
= 2\left(\frac{16\sqrt{2}}{3}\right) = \frac{32\sqrt{2}}{3} \text{ sq. units}
$$

3.
$$
y = 2 - x^2
$$
, $y = x^2$

Sol:

2 y 2 x = − _______(1) y = x 2 _______(2)

FROM above equations,

$$
2-x^2 = x^2
$$
, $2 = 2x^2$ or $x^2 = 1$
 $x = \pm 1$

Area bounded by two curves is

$$
2 \times \int_{-1}^{1} (y \text{ of } (1) - y \text{ of } (2)) dx
$$

= $2 \int_{-1}^{1} (2 - x^2 - x^2) dx$
= $2 \int_{-1}^{1} (2 - 2x^2) dx = 2 \left(2x - \frac{2x^3}{3} \right)_{-1}^{1}$
= $2 \left[2 - \frac{2}{3} \right] = \frac{8}{3}$ sq. units.

4. Show that the area enclosed between the curve $y^2 = 12(x+3)$ and

$$
y^2 = 20(5-x)
$$
 is $64\sqrt{\frac{5}{3}}$.

Sol: Equation of the curves are

$$
y^2 = 12(x+3) \qquad (1)
$$

$$
y^2 = 20(5-x) \qquad (2)
$$

Eliminating y

$$
12(x+3) = 20(5-x)
$$

 $x + 9 = 25 - 5x$, $8x = 16$, $x = 2$

Given curves are intersecting on $x=2$.

The points of intersection of the curves and the x axis are $x=5$ and $x=-3$.

$$
y^2 = 12(2+3) = 60
$$

$$
y = \sqrt{60} = \pm 2\sqrt{15}
$$

The required area is symmetrical about $X - axis$

Required area =2x(AREA ABCOA)

$$
= 2.(\text{AREA ABEA} + \text{AREA BECB})
$$

$$
= 2 \left[\int_{-3}^{2} 2\sqrt{3}\sqrt{x+3} \, dx + \int_{2}^{5} 2\sqrt{5}\sqrt{5-x} \, dx \right]
$$

$$
= 4\sqrt{3} \left(\frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}} \right)_{-3}^{2} + 4\sqrt{5} \left(\frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} \right)_{2}^{3}
$$

www.sakshieducation.com

www.sakshieducation.com

$$
= \frac{8\sqrt{3}}{3} \left(\frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}} \right)^2 + 4\sqrt{5} \left(\frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} \right)^5
$$

\n
$$
= \frac{8\sqrt{3}}{3} \left(5^{\frac{3}{2}} - 0 \right) - \frac{8\sqrt{5}}{3} \left[0 - 3^{\frac{3}{2}} \right]
$$

\n
$$
= \frac{8\sqrt{3}}{3} \cdot 5\sqrt{5} + \frac{8\sqrt{5}}{3} \left[0 - 3^{\frac{3}{2}} \right]
$$

\n
$$
= \frac{40\sqrt{15}}{3} + \frac{24\sqrt{15}}{3} = \frac{64}{3} \sqrt{15} \text{ sq. units}
$$

\n
$$
= 64 \sqrt{\frac{15}{9}} \text{ sq. units} = 64 \sqrt{\frac{5}{3}} \text{ sq. units.}
$$

\n5. Find the area of the region $\{(x, y) / x^2 - x - 1 \le y \le -1\}$
\nSoI. Let the curves be $y = x^2 - x - 1$...(1)
\nAnd $y = -1$
\n
$$
y = x^2 - x - 1 = \left(x - \frac{1}{2} \right)^2 - \frac{5}{4}
$$

\n
$$
y = \frac{5}{4} - \left(x - \frac{1}{2} \right)^2
$$
 is a parabola with
\nVertex $\left(\frac{1}{2}, \frac{-5}{4} \right)$
\nFrom (1) and (2),
\n $x^2 - x - 1 = -1 \Rightarrow x^2 - x = 0 \Rightarrow x = 0, x = 1$
\nGiven curves are intersecting at $x = 0$ and $x = 1$.

Required area = $\int (y \text{ of } (1) - y \text{ of } (2))dx$ $\boldsymbol{0}$ $\int (y \text{ of } (1) - y \text{ of } (2)) dx$ $\int_{0}^{1} (x^2 - x - 1) dx - \int_{0}^{1} (-1) dx$ 2 0 0 $A = \int (x^2 - x - 1) dx - \int (-1) dx$ $\int_{0}^{1} \left(\frac{x^{3}}{2} - \frac{x^{2}}{2} - x \right) - \int_{0}^{1} \left[-x \right]$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\left|\frac{x^{3}}{2} - \frac{x^{2}}{2} - x\right| - \frac{1}{2} \left[-x\right] = \frac{1}{2}$ sq.units 3 2 \int ^o 1 \int 6 $=\left|\int_{0}^{1}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}-x\right)-\int_{0}^{1}\left[-x\right]\right|$

6. The circle $x^2 - y^2 = 8$ is divided into two parts by the parabola $2y = x^2$. Find **the area of both the parts.**

Sol:

$$
x^{2} + y^{2} = 8
$$
 (1)
2y = x² (2)

Eliminating Y between equations (1) and (2)

 (2)

 $t = -8$ (not possible) $x^2 = 4 \Rightarrow x = \pm 2$

Given curves are intersecting at $x=2$ and $x=-2$.

$$
\begin{aligned} \text{AREA OBCO} &= \int_0^2 \sqrt{8 - x^2} \, \, \mathrm{d}x - \int_0^2 \frac{x^2}{2} \, \mathrm{d}x \\ &= \left[\frac{1}{2} \times \sqrt{8 - x^2} + \frac{8}{2} \sin^{-1} \frac{x}{2\sqrt{2}} \right]_0^2 - \left[\frac{x^3}{6} \right]_0^2 \\ &= \frac{1}{2} .2.2 + 4 \cdot \frac{\pi}{4} - \frac{8}{6} = \frac{2}{3} + \pi \end{aligned}
$$

As curve is symmetric about Y – axis, total area ABCOA= 2. OBCO

$$
= 2\left(\frac{2}{3} + \pi\right) = \frac{4}{3} + 2\pi \text{sq. units}.
$$

AREA of the circle = $\pi r^2 = 8\pi$

Remain part =
$$
8\pi - \left(\frac{4}{3} + 2\pi\right)
$$

= $\left(6\pi - \frac{4}{3}\right)$ sq. units.

7. Show that the area of the region bounded by 2 $\sqrt{2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 b $+\frac{y}{\sqrt{2}}=1$ (ellipse) is π ab. Also

deduce the area of the circle $x^2 + y^2 = a^2$.

 Sol:

The ellipse is symmetrical about X and Y axis Area of the ellipse $= 4$ Area of

$$
CAB = 4.\frac{\pi}{4} \text{ ab}
$$

 Equation of ellipse is 2 $\sqrt{2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 b $+\frac{J}{12}=$

$$
y = \frac{b}{a} \sqrt{a^2 - x^2}
$$

$$
\begin{aligned} \text{CAB} &= \frac{b}{a} \int_0^a \sqrt{a^2 - x^2} \, \, \text{d}\mathbf{n} \\ &= \frac{b}{a} \left(\frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right)_0 \\ &= \frac{b}{a} \left(0 + \frac{a^2}{2} \cdot \frac{\pi}{2} - \text{a}b \right) = \frac{\pi a^2}{4} \cdot \frac{b}{a} = \frac{\pi}{4} \text{a}b \end{aligned}
$$

(From prob. 8 in ex $10(a)$) = π ab

Substituting $b = a$, we get the circle

 $x^2 + y^2 = a^2$

Area of the circle = πa (a) = πa^2 sq. units.

8. Find the area of the region enclosed by the curves $y = \sin \pi x$, $y = x^2 - x$, $x = 2$.

Sol: The graphs of the given equations

 $y = \sin \pi x$... (1)

and $y = x^2 - x$, $x = 2$ are shown below.

$$
\begin{aligned}\n&= \left| \int_{1}^{2} \sin \pi x \, dx - \int_{1}^{2} (x^{2} - x) dx \right| \\
&= \left| - \left(\frac{\cos \pi x}{\pi} \right)_{1}^{2} - \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} \right)_{1}^{2} \right| \\
&= \left| - \left[\frac{\cos 2\pi}{\pi} - \frac{\cos \pi}{\pi} \right] - \left[\left(\frac{8}{3} - 2 \right) - \left(\frac{1}{3} - \frac{1}{2} \right) \right] \right| \\
&= \left| - \frac{1}{\pi} [1 + 1] - \left[\frac{8}{3} - 2 - \frac{1}{3} + \frac{1}{2} \right] \right| \\
&= \left| - \frac{2}{\pi} - \left[\frac{2}{3} + \frac{1}{6} \right] \right| \\
&= \left| - \frac{2}{\pi} - \frac{5}{6} \right| = \frac{2}{\pi} + \frac{5}{6} \text{ sq.units.}\n\end{aligned}
$$

9. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of square bounded by the lines $x = 0$, $x = 4$, $y = 4$ and $y = 0$ into three equal parts.

Sol:

When y = 4 we have $4x = 16 \implies x = 4$.

∴ Points of intersection of parabola is $P(4, 4)$.

∴ Area bounded by the parabolas

$$
= \int_{0}^{4} 2\sqrt{x} dx - \int_{0}^{4} \frac{x^{2}}{4} dx
$$

$$
= \int_{0}^{4} \left(2\sqrt{x} - \frac{x^{2}}{4}\right) dx
$$

$$
= 2\left(\frac{2}{3}\right) (x^{3/2})_{0}^{4} - \frac{1}{4} \left[\frac{x^{3}}{3}\right]_{0}^{4}
$$

$$
= \frac{4}{3} (8) - \frac{1}{4} \left(\frac{64}{3}\right)
$$

$$
= \frac{32}{3} - \frac{16}{3} = \frac{16}{3} \text{ sq. units.}
$$

Area of the square formed = $(OA)^2 = 4^2 = 16$

Since the area bounded by the parabolas

 $x^2 = 4y$ and $y^2 = 4x$ is $\frac{16}{3}$ 3 sq.units. which is one third of the area of square we conclude that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by $x = 0$,

 $x = 4$, $y = 0$, $y = 4$ into three equal parts.

10. **Let AOB be the positive quadrant of the** 2 $\sqrt{2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 b $+\frac{y}{x^2}$ =1with OA = a, OB =b. **Then show that the area bounded between the chord AB and the arc AB of**

the ellipse is
$$
\frac{(\pi - 2)ab}{4}
$$
.
\nSol: Let OA = a, OB = b
\nEquation of AB is $\frac{x}{a} + \frac{y}{b} = 1$
\n $\frac{y}{b} = 1 - \frac{x}{a}, y = b\left(1 - \frac{x}{a}\right)$

11. Find the area enclosed between $y = x^2 - 5x$ and $y = 4-2x$.

Sol: Equations of the curves are

$$
y = x2 - 5x
$$
........(1)

$$
y = 4 - 2x
$$
........(2)

$$
x2 - 5x = 4 - 2x
$$
, $x2 - 5x = 4 - 2x$

$$
x2 - 3x - 4 = 0
$$

$$
(x+1)(x-4)=0 \t x = -1,4
$$
\n
$$
\begin{array}{rcl}\n\text{Required area} & \text{if } (4-2x) - (x^2 - 5x) \text{ d}x \\
&= \int_{-1}^{4} (4+3x-x^2) dx = \left(4x + \frac{3}{2}x^2 - \frac{x^3}{3}\right)_{-1}^{4} \\
&= \left[16 + \frac{3}{2}16 - \frac{64}{3}\right) - \left(-4 + \frac{3}{2} + \frac{1}{3}\right) \\
&= 16 + 24 - \frac{64}{3} + 4 - \frac{3}{2} - \frac{1}{3} \\
&= 44 - \frac{64}{3} - \frac{3}{2} - \frac{1}{3} \\
&= \frac{264 - 128 - 9 - 2}{6} = \frac{125}{6}\n\end{array}
$$

12. Find the area bounded between the curves $y = x^2$, $y = \sqrt{x}$.

$$
\therefore
$$
 The curves intersect at O(0,0) A(1,1)

Required area =
$$
=\int_{0}^{1} (\sqrt{x} - x^2) dx
$$

= $\left(\frac{2}{3} \times \sqrt{x} - \frac{x^3}{3}\right)_{0}^{1} - \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$

13. Find the area bounded between the curves $y^2 = 4ax$, $x^2 = 4by (a > 0, b > 0)$.

Sol: Equations of the given curves are

www.sakshieducation.com

$$
= \left[(4a)^{\frac{1}{2}} 8(b^2a)^{\frac{1}{3}\frac{3}{2}} \frac{2}{3} - \frac{4^3(b^2a)^{3\frac{1}{3}}}{12b} \right]
$$

$$
= \left[2ab\frac{16}{3} - \frac{64b^2a}{12b} \right] = ab\left(\frac{32}{3} - \frac{16}{3}\right)
$$

$$
= \frac{16}{3} ab \text{ sq. units}
$$